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Abstrad-The paper presents a method to deal with an inclined crack in an elastic strip. No assumptions of
symmetry are made. The method involves the solutions for acracked plane and an uncracked strip and results
in two coupled singular integral equations with finite interval of integration. Acrack in a half-plane arises as a
limiting case. For internal cracks the integral equations are of a standard type and do not present any
numerical difficulties. Results are presented for loads according to the technical beam theory.

I. INTRODUCTION

In recent years stress intensity factors have been determined for a large number of geometries,
and many problems relating to cracks in a strip or a half-plane have been treated. A number of
these are mentioned below, Some of these problems however have been unnecessarily restricted to
symmetrical geometry and loading.

A variety of methods are available. The Wiener-Hopf Technique has been applied in [1,2] to
solve a problem involving edge cracks at right angles to the boundary. The symmetrical problem
of an internal transverse crack in a strip was formUlated in terms of a dual integral equation and
solved in [3]. Later this solution was extended to a cracked strip between two half-planes [4, 5].
The problem of a single edge crack in a strip was recently treated by the same technique in [6].
Most of these problems and several others have also been solved by means of singular integral
equations[7-11]. A different formulation also using singular integral equations has been given in
[12]. Finally mention must be made of series and collocation techniques described in [13-16].

The purpose of this paper is to treat an oblique crack in an elastic strip under arbitrary loading.
The equivalent problem for a cracked half-plane arises as a limiting case. Two coupled singular
integral equations with a finite interval of integration are obtained by use of Fourier transforms.
These equations remain valid for an edge crack. The numerical solution follows the quadrature
method given in [17,18]. An estimate of the order of magnitude of the errors in the stress
intensity factors is attempted by evaluation of the expansion coefficients of the interpolation
polynomials as described in [19].

2. GENERAL FORMULAS

The problem under consideration is illustrated in Fig. I. It consists of an elastic strip of width
H containing a linear crack. The crack's inclination with the y-axis is designated w
(-11' /2 < w < 11'/2). In this section the calculations are performed for an internal crack in a strip of
finite width. As limiting cases we can obtain solutions for an edge crack and a crack in a
half-plane. Details concerning these cases may be found in [20]. The calculations make use of two
rectangular coordinate systems, {x, y} and {n, s}. The connection between these systems is given
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Fig. 1. Coordinate systems and geometrical parameters.

by the orthogonal transformation formula.

{n} = {c.os w -sin w}{X}
s sm w cos w y

(2.1)

In the {n, s} system the crack extends from (0, a) to (0, b). The strip is defined in the {x, y} system
by Osy sH.

2.1 The stress functions
The strip boundaries are stress free, while normal and shear stresses are prescribed on the

crack surfaces. The analysis is limited to the case where the opposite crack surfaces have equal
but opposite stress vectors. By simple superposition we can then obtain solutions for the cracked
strip with any kind of loading which does not include nonequilibrated loading on the crack
provided we can find the corresponding solution for the uncracked strip. Using the {n, s} system
on the crack surface and the {x, y} system on the strip boundaries we have

O'nn(O+, s) = O'nn(O-, s) = p(s) a < s < b

O'n.(O+, s) = (Tn. (0-, s) = q(s) a < s < b

O'y,(x, 0) = O'yy(x, H) = 0 -00 < x < 00

O'xy(x, 0) = (TXY(x, H) = 0 -00 < x < 00

The stresses will be described by a stress function <I> defined by

(2.2a,b)

(2.3a,b)

(2.4a-c)

Similar relations hold in the {x, y} system. The stress function <I> is constructed from two parts
<l>1(n, s) and <l>2(X, y).

<I> = <l>1(n, s) +<l>2(X, y) (2.5)

This is a generalization of the technique used in [3] for the determination of stresses in a strip
with a symmetrically loaded transverse central crack.
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<l>1(n, s) is the stress function for the full plane with a crack from (0, a) to (0, b) loaded as
described by (2.2). Use of complex Fourier transforms immediately yields[21]

!
2~ L~ [C1(1J) + nlnIC2(11)] e-I..,ln e-f"'·d11, n >0

<l>1(n, s) =

2~ L~ [C3(11)+nl1JIC4(11)]el..,ln e-I"'·d11, n <0 (2.6)

In (2.6) use has not yet been made of the fact that the stress vectors on the surfaces n = 0 + and
n = 0 - are of equal magnitude. This is conveniently expressed by

<1>1(0+, s) = <1>1(0-, s)

-i. <1>1(0+ s) = -i. <1>1(0_ s)
an ' an '

(2.7a, b)

By substituting (2.6) in (2.7) we see that <l>1(n, s) is described by two unknown functions.
Renaming these B1(11) and B2(11) we get

In general B 1(11) and Bi1J) are complex functions assuming values different from zero in infinite
intervals. This is inconvenient for numerical calculations and we obtain unknown functions of
finite support in the following way. Using the Lame constants A and IL Hooke's law for plane
strain is

(au av)
an, = IL as + an (2.9a-c)

u and v are the displacements in the {n, s} system. By suitable elimination in (2.9) we obtain

(2.10a, b)

where K for plane strain is defined by Poisson's ratio v as 3-4v. The usual modification of A for
plane stress leads to K = (3-v)/(l + v). We now define the functions f(s) and g(s) by

21L a
f(s) = K +1 as [u(O+, s) - u(O-, s)]



696 STEEN KRENK

2M iJ
g(s) == K + 1as [v(O+, s) - v(O-, s)] (2.11a, b)

As the crack extends from a to b we obviously have

f(s)==g(s)==O for s<a or b<s (2.12)

Substitution of (2.11) and (2.8) in (2.10) and use of the inverse Fourier transform lead to

7) 17) !B 1( 7)) == if f(t) ei
", dt

7) 2B 2(7))== - f g(t)ei"'dt (2.13a, b)

We denote stresses corresponding to cI>\n, s) by index 1. These are found by differentiation of
(2.8) followed by substitution of (2.13). The integration with respect to 7) is carried out by use of
the sine and cosine transform formulas listed in Appendix A.

(2.14a-c)

The stress function cl>2(X, y) is the solution for the uncracked strip with boundary loading. Use
of the complex Fourier transform yields

The task now is to determine the four arbitrary functions Ai(~) in terms of f(t) and g(t) by means
of the strip boundary conditions (2.3).

2.2 The strip boundary conditions
The boundary conditions on the strip amount to the requirement that the resultant normal and
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shear stresses on the boundaries y =0 and y =H must vanish. We introduce the notation

6'J7

a = cos w,

and obtain from (2.3), (2.5) and (2.1)

{3=sinw (2.16)

(2.17a, b)

The right-hand sides are expressed in terms of f(t), g(t) and the coordinates (n, S - t) by (2.14).
To obtain equations for the unknown functions AI, i = 1, ... ,4, it is necessary to apply a complex
Fourier transform· with respect to the variable x. In order to do that we make the following
observation. The vector QP in Fig. 1has the coordinates (n, S - t) in the {n, s} system. According
to (2.1) its coordinates (X, Y) in the {x, y} system will then satisfy

In terms of the coordinates (x, y) to the point P this amounts to

X = x - {3t, Y = y - at

(2.18)

(2. 19a, b)

We now substitute X and Yin (2.14), and the stress functions from (2.14) and (2.15) are inserted
in (2.17). Because of (2.19), a Fourier transform using e lfx is easily altered to a Fourier transform
using e~. The calculation of the transforms of the right-hand sides of (2.17) is quite extensive and
will be omitted here. Use is made of the complex Fourier transforms listed in Appendix A. The
result may be written in the form

AM) + A3(~) = Gl(~)

AM) - AM) - A3(~) - A4(~) = G2(~)

Al(~)e-EY+ ~HA2(~)e-EH +A3(~)eEH+ ~HA4(~)eEH =G3W
Al(~) e-EY

- (1- ~H)AM)e-EH - AM) eEH - (1 +~H)A4(~) eEH = G4(~)

(2.20a-d)

The functions GM), i = 1, ... , 4 do not enter directly into the solution but only through the
following combinations

HI(~) = Gl(~) + G2(~)

H2(~) = GM)- G2(~)

HM) = GM) + G4(~)

H4(~) = GM) - G4(~) (2.21a-d)

The functions Hl(~), i = 1, ... , 4 are listed in Appendix B. By means of these functions the
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solution to (2.20) can be expressed in terms of f(t) and g(t).

2Al(~)= A2(s)+ A4(~)+HI(~)

2A3(s) = - A 2(s) - A4(€) + H 2(s)

A2(s) = {2sH[H1(s) - efHH3(s)]

+(eEH - e-fH)[efHH2({) - H4(s)]}/[(efH-e-EH)2-4eH2]

A4(t) = {2tH[H2(e) - e-fHH4(t)J

+(efH-e-fH)[e-EHHM) - HM)]}/[(eEH -e-U')2-4eH2]

(2.22a, b)

(2.23a, b)

2.3 Stress Influence Functions
Influence functions for the stresses connected with the stress function ~I(n, s) were given in

(2.14). The following stress combinations are conveniently used in the evaluation of stresses
corresponding to <l>2(X, y).

2 2 [a 2<1>2 a2<1>2]j[u xx(x,y)+u yy{x,y)]/2= --ar+a:?"" 2

= - 2~ L: {A2(e) e-EY - A4(e) eEYU2 e-fCx dt

1 J~= 271' -00 ([AM) - A2(f) + syA2(s)] e-EY

+ [A3(~) +A4(t) +tyA4(~)} eE1ee- fCx dt

2 ' a2<1>2
u "y{x, y) = - axay

= 2~ L: {'-[A1(t) - A 2(t)+ tyA2(~)]e-EY

+ [A 3(e) + A4(e) +SyA4(m eE1ee- fCx dt (2.24a-c)

The interval of integration in (2.24) is divided at e= 0 and the negative values of eare exchanged
with -to Use of (2.23) and Appendix B then enables us to express the stress combinations (2.24)
as integrals of real functions multiplied by f(t) and g(t). We introduce the stress influence
functions Slj(X, y, t), i = 1,2,3, j = 1,2, by the relations

[u;"(x, y) +u~y{x, y)]/2 =.! (b [SIl(X, y, t)/(t) +SI2(X, y, t)g(t)] dt
71' J..

[u;..(x, y) - U;y(x, y)]/2 =.! (b [S21(X, y, t)f(t) +S22(X, y, t)g(t)] dt
71' J..
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1 i b

u;Y(X, y) = - [S31(X, y, t)f(t) +S32(X, y, t)g(t)] dt
7f a

699

(2.25a-c)

We define h = H Icos w, and all six functions SI/ (x, y, t) can now be given in the symmetric form

SI/(X, Y, t) = L~ [M1/(x, Y, t, e) - MI/U~h-x, ah-y, h-t, e)] de

i =1,2,3; j =1,2 (2.26)

It is seen from Fig. 1 that this form implies a certain point symmetry with respect to the point
(0, h/2) in the {n, s} system. The functions M1/(x, y, t, e) are listed in Appendix C.

2.4 The integral equations
Only the homogeneous part of the boundary conditions (2.2) has been used. The

inhomogeneous part consists of prescribed stresses on the crack surface

Unn(O, s) = U~n(O, s)+ U;n(O, s) = p(s), a< s < b

Un. (0, s) =u~(O, s) +u;.(O, s) =q(s), a < s < b

From the influence functions (2.14) we obtain

U I (0 s)=..!. (b f(t) dt
nn, 7f Ja t - s

U~(O,S)=..!. (b g(t) dt
7f Ja t - s

(2.27a, b)

(2.28a, b)

where the integrals are defined by their Cauchy principal values. U;n(O, s) and u;.(O, s) are found
by transforming the stresses given by (2.25) to the {n, s} system. The boundary conditions (2.33)
then take the form of two singular integral equations of the first kind.

r{~~ dt +rK l1(s, t)f(t) dt +f Kds, t)g(t) dt = 7fp(s)

a<s<b

f f~~ dt +f K 21(S, t)f(t) dt +f K 22(S, t)g(t) dt = 7fq(s)

a<s<b

Here we have defined

KI/(S, t) = SI/({3S, as, t) +S2/({3S, as, t) cos (2w)

- S3/ ({3s, as, t) sin (2w)

K 2/(s, t) = S2/({3S, as, t) sin (2w) +S3/({3S, as, t) cos (2w)

j = 1,2

(2.29a, b)

(2.30a, b)
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To retain the continuity of the material outside the crack we must impose the two conditions

rf(t)dt = 0

rg(t)dt =0 (2.31a, b)

For 0 < a < b < h the kernels Klj(s, t) are continuous bounded functions and f(t) and g(t)
have the fundamental function w(t) == (b - t)-112(t - a)-1/2. It is noted that the equations (2.29)
are ullcoupled for l1) = O.

The formulation presented here allows the determination of the stresses at any pointof the
cracked strip once f(t) and g(t) have been determined. This is done by evaluating a~n, a~s and
a ~s by (2.14) and a~, a;yand a;y by (2.25). The total stresses at the point are obtained by expressing
all components in one coordinate system. It is easily realized that an extensive survey of the
stresses is a considerable numerical task because the influence functions S;j(x, Y, t) must be
reevaluated by numerical integration for each new point (x, y).

3. NUMERICAL METHOD

In the case of internal cracks the only singularities of the kernels are of Cauchy type. For this
type of integral equations a quadrature method has been established[l7]. First the intervals of
integration are normalized by introduction of the new variables rand (,

t == r(b - a)/2 +(b +a)/2

S == (b -a)/2+(b +a)/2

In the new formulation we use kernels defined by

and the unknown functions are

q,(r) == F(r)(l-r2rI/2 == f(t)

l/!(T) = G(T)(l- T2r l12 == g(t)

(2.29) and (2.31) then become

fl :~ridT+ fl kll«(,T)q,(T)dT +fl kI M,T)l/!(r)dT=7Tp(n

fl :~r~dT+Lk21«(,T)q,(r)dT+Lk22«(,T)l/!(r)dT=7Tq(n

-1<{<1

fl q,(T)dr=O

(3.1a,b)

(3.2)

(3.3a, b)

(3.4a, b)
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(3.5a, b)

In (3.4) pW and qW are determined from the original definition by (3.1b).
The quadrature method is based on two essential assumptions. It is assumed that F(1') and

G(T) can be approximated by polynomials of finite degree n -1. Furthermore it is assumed that
the four functions k l1((, T)F(T), k21((,T)F(T), k12((,T)G(T) and kd(, T)G(T) considered as
functions of l' may be approximated by polynomials of degree 2n -1 [17-19]. Under these
assumptions we obtain the following system of linear equations for the determination of F(Tj)
and G(TiJ.

(3.6a, b)

(3.7a, b)

where we have defined

[
2' 1 ]Tj =cos J2~ 7T, j =1, 2, ... , n

i = 1,2, ... , n - 1 (3.8a, b)

The kernels kll<((h Tj) are evaluated by numerical integration using Filon's formula. In order to
check the convergence of the method it is convenient to express the solutions in terms of
Chebyshev polynomials of the first kind

,,-1

F(T) = co/2+ L CSk(T)
k-I

"-I

G(T) = do/2+ L dkTk(T)
k-I

As proved in [19] the coeffilcients are determined by

(3.9a, b)

2" [2 j -1 ]Ck = - L cos -- k7T F(Tj),
n }-I 2n

k = 0, 1, ... , n - 1 (3.10)

and the similar formula for dk •

The quantities of main importance are the stress intensity factors. We define them by
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(3.11a, b)

and the similar formulas for s = a. The minus sign in (3.11b) is introduced because the crack is
along the second axis in the {n, s} system. The stress intensity factors are proportional to the
values of F(7') and G(7') at the corresponding endpoints.

kl(a) =F(-I)V(b - a)f2, k2(a) = - G(l)V(b - a)/2

kl(b) = -F(l)V(b - a)/2, k2(b) = G(-l)V(b - a)/2

The value F(l) may be determined directly as

1 " sin [~(2j - 1)7IJ

F(l) = 11~ . [2j - 1 ] F(7'1)
sm --:r,;- 7T

F(-1), G(l) and G(-1) are determined from similar formulas [19].

(3.12a, b)

(3.13)

4. NUMERICAL RESULTS

The numerical results are given for three load situations. These are chosen as the loads arising
from tension, bending and shear according to technical beam theory. In the {x, y} system the
stresses in the uncracked strip are:

Tension;

Bending;

Shear;

U"" = U m, U yy = 0, Uxy = °

U"" = um(l- 2yIH), U yy = 0, Uxy = °

Uxx = 0, Uxy = 0, Uxy = 4um(ylH -1)yIH

(4.1a-c)

(4.2a-c)

(4.3a-c)

pes) and q(s) are found from (4.1-4.3) by transforming the stresses to the {n, s} system and
changing the sign. Again we use h = H Icos w.

Tension:

Bending;

pes) = a
2
um(2slh -1), q(s) = afW'm(2slh -1)

(4.4a, b)

(4.5a, b)
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p(s) = 8afJum(slh -l)slh

q(s) = -4(a2- ~2)Um(Slh -l)slh

703

(4.6a, b)

The stress intensity factors are normalized with respect to the maximum stress Um and a length
parameter

1=(b-a)/2

The crack size is characterized by the dimensionless parameter

A =(b-a)IH

(4.7)

(4.8)

First a central crack with (U =0 is considered (Table 1). An estimate of the relative error is
given in the last column. It has been obtained by means of Chebyshev series expansions and is of
empirical nature [19]. The same problem has been considered in [3J, [13] and [14] for pure tension
(Table 2). There is good agreement and it is seen that for moderate values of A high accuracy is
obtained by use of the empirical formula in the last column. Tables 3 and 4 contain the same

Table 1. Stress intensity factors at a for a central crack, (II = 0

III =0 Tension Bending Shear Relative
A k.ier,. VI k,ler,. VI kier,. VI error

0·\ \.006() 0·05000 \·0017 \0-'
0·2 \·0246 0·10007 1·0071 10'"
0·3 \·0577 0·15051 \·0175 10-'
0'4 \01094 0·20225 1·0353 10'"
()'5 \01867 0·25724 \·0648 10'"
0·6 1·3033 0·31965 I· tt48 2. \0-'
0·7 \·4884 0·39864 \·2041 2.10-'
0·8 1·8169 0·51851 \·3801 2.10'"
0·9 2·585 0·7777 \0835 5.10'"
0·95 4-252 \·t14 2'332 10-'

Table 2. Stress intensity factors for a central crack in a
strip in tension, (II = 0

w=O Ref. [t4] Ref. [3]

.\ k,/er..v'/ k,/er..v'/ (ltv'cos (.\1T 12)

0·1 1·OO6(} 1·007 l-(lO62
0·2 \'0246 1·026 \'0254
0·3 1·0577 1-059 \-0594
0·4 H094 l·tl4 \-llt8
0·5 \01867 \·194 1·1892
0·6 \-3033 1·309 1-3043
0·7 l-4882 1·500 l-4841
0·8 1·8160 \·826 \·7989
0·9 2'58 2·580 2·5283
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information for w == 11'16 and w = 11'/3_ For small values of ,.\ the stress intensity factors may be
estimated by use of Table 1 and simple transform of the crack surface loading. For the case of
tension we can obtain the stress intensity factors from curves given in [10] for ,.\ = 1/3. For
w == 11'16 we get

and for w = 11'/3
k l =0·806 am Vi, k2 = - 0·440 am Vi

kl = 0-276 am Vi, k2 = - 0·455 am Vi

A certain difference from the values in Tables 3 and 4 is noted. Both here and in the previous case
this method is believed to yield superior accuracy due to the efficient numerical treatment of the

Table 3. Stress intensity factors at a for acentral crack, <lJ = 7r/6

<lJ = 7r/6 Tension Bending Shear

A k'/O'm vi k'/O'm vi k./O'm vi k'/O'm vi k'/O'm vi k,/umvi

0-1 0-7557 -0'4338 0-0325 -0-0187 0-8713 0·5025
0-2 0-7729 -0'4364 0'0650 -0-0375 0·8876 0-5099
0·3 0-8023 -0'4412 0·0978 -0·0563 0-9160 0-5223
0·4 0·8452 -0'4488 0'1313 -0,0753 0-9589 0·5396
0·5 0·9039 -0'4607 0'1665 -0·0948 1-0200 0·5622
0·6 0·9827 -0'4787 0·2053 -0,1154 1·1057 0-5909
0·7 1·0898 -0,5066 0·2507 -0,1384 1-2274 0·6278
0·8 1·2417 -0,5510 0·3082 -0-1661 1·4063 0·6782
0·9 1·4765 -0-6285 0'3907 -0'2047 1·6915 0·7541

Table 4. Stress intensity factors at a for a central crack, <lJ = 7r/3

<lJ = 7r/3 Tension Bending Shear

A k,JO'mvi k,/umvi k,/umvi k,/umvi k.!O'm vi k,/umvi

0·1 0·2527 -0'4352 0-00625 -0'01083 0·8746 -0·5017
0·2 0·2605 -0'4416 0-01251 -0,02166 0·9000 -0·5067
0-3 0·2732 -0'4518 0·01882 -0,03254 0'9414 -0·5149
0·4 0·2900 -0'4654 0-02526 -0'04354 0·9975 -0,5263
0·5 0·3105 -0'4817 0·03197 -0'05479 1·0671 -0,5408
0·6 0·3341 -0,5002 0-03906 -0'06642 1-1494 -0,5584
0·7 0·3606 -0,5209 0·04669 -0,07861 1'2440 -0-5795
0·8 0·3900 -0,5435 0·05501 -0'09154 1·3515 -0,6046
0·9 0·4225 -0'5684 0·06415 -0'10540 1-4733 -0,6342

Table 5. Stress intensity factors at a for an eccentric
crack, <lJ = 0,,, = 0·2

<lJ =0 Tension Bending Shear

A k./O'm Vi k'/O'm Vi k,/umVi

0·1 1·0079 0·2516 0·9420
0·2 1·0340 0·3071 0·9292
0·3 1·0856 0·3687 0·9240
0·4 1-1743 0-4410 0·9313
0·5 \·3264 0·5351 0·9609
0·6 1·6096 0·6800 1·0363
0·7 2·2917 0·9935 1·2422
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Table 6. Stress intensity factors at a for an eccentric crack, w =1T/6, f =0·2

W= 1T/6 Tension bending Shear

A k,/um Vi k,/um Vi k./um Vi k,lum Vi k.tum vi k'/um vi

0'1 0·7569 -0,4344 0·1839 -0,1056 0·8228 0·4739
0·2 0·7785 -0,4397 0·2208 -0,1254 0·8289 0·4726
0'2 0·8171 -0,4509 0·2619 -0,1465 0·8534 0·4751
0'4 0·8768 -0,4709 0·3091 -0,1696 0·9019 0·4806
0·5 0·9656 -0·5047 0·3665 -0'1965 0·9836 0·4875
0·6 1·1006 -0·5619 0·4426 -0·2311 H167 0·4942
0·7 1-3255 -0·6657 0·5577 -0,2830 1·3440 0·4977

Table 7. Stress intensity factors at a for an eccentric crack, w =1T/3, f =0·2

w = .,,/3 Tension Bending Shear

A k,/um Vi k,/um vi k./um Vi k,/um Vi k./um Vi k,/um VI

0·1 0·2528 -0,4356 0·0568 -0,0979 0·8321 -0,4771
0·2 0·2605 -0,4436 0·0647 -0,1104 0·8508 -0'4796
0·3 0·2721 -0,4569 0·0734 -0,1239 0·8860 -0,4889
0·4 0·2866 -0,4752 0·0832 -0,1386 0·9360 -0,5055
0·5 0·3039 -0,4979 0·0941 -0,1545 0·9996 -0,5296
0·6 0·3239 -0·5245 0·1063 -0·1718 1·0765 -0'5614
0'7 0·3471 -0·5554 0·1201 -0-1909 1-1674 -0-6016

singularities. Tables 5 and 7 contain similar results for eccentric cracks. The eccentricity is
characterized by the parameter

e=l-(b+a)/h

Further results have been given in [20J.

(4.9)
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APPENDIX A

The transform formulas used are listed in pairs where the first is a simple sine or cosine
transform and the second is the corresponding inverse complex Fourier transform.

I J~ Y
- 2 2 elEX dX = sgn (Y) e-1fYI
1T _~X+Y

L~ e-flYI sin (X~) dt: = X
o ~ ~ X 2 + y 2

1 J~ 2X 2elEX dX = i sgn (~) e-1EY1
1T -~X+Y

L
~ -flYI X2- y 2

o ~Y e cos (X~) d~ = - Y [X2+ y2f

lJ~ Y X
2

_ y2 IEXdX- -1t:IY -lfYI
1T -00 [X2+ y 2]2 e - ~ e

L~ ~I YI e-flYI sin (X~) d~ = [;:;:2]2

I J~ 2xy
2

IEXdX - '~IYI -lfYI
;: _~ [X2+ y2]2e -I e

L~ (1- ~IYI> e-flYI cos (X~)d~ = [;?:'~!r

~ f~ [X;:2~2]2eIEX dX = sgn(Y)(1-I~IIYI)e-'fY'

L~ (1- ~I YI> e-flYI sin (X~) d~ = X[::; ~:]2

1 f~ X 2
- y 2

;: _~ X [X2+ y 2f elfX dX = i sgn (~)(1-I~"YI) e-lfYI

(A. I)

(A.2)

(A.3)

(AA)

(A.5)

(A.6)
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APPENDIX B

The function HI (~), i = 1, ... ,4 from (2.21-23). Note that ~ is a positive variable in all
expressions in this appendix. h is defined as H /a.

eHM) = faD f(t)el(fJEI-..Je-aEI dt + i faD g(t)el(/JEt-..Je-aEt dt

~2Hl(-~)=rf(t)[-e-I(/JEf+..)+ 2a~t e-l(fJEI-..J] e-aEt dt

- i faD g(t)[e-l(fJEt+..J +2a~t e-l(fJEt-..J] e-aEl dt

eH2(~)=rf(t)[_el(/JEt+"J +2a~t el(fJEI-"~ e-aEt dt

+irg(t)[eHfJEI+"') +2a~t el(fJEI-")] e-aEt dt

~2H2(-~)= faD f(t) e-I(/ilft-..Je-aEt dt - i1..Dget) e-HfJEI-") e-aEt dt

eH3(~)=rf(t)[e'(/ilft-..J- 2a~(h - t) el(/JEt+..J] e-aE(h-t) dt

+irg(t)[e'(/ilft-") +2a€(h - t) el(/ilft+..,] e-aE(h-tJ dt

eH3(-~)= - Lb

f(t) e-I(/ilft+.., e-aE(h-'J dt - if' get) e-I(/ilft+..Je-aE(h-tJdt

e2H4(~)= - LD
f(t) eH/ilft+..Je-aE(h-tJ dt + iLD get) el(/ilft+.,) e-aEOt-!) dt

~2H4(-~)=rf(t)[e-I(/ilft-..)- 2ae(h - t) e-I(/ilft+.,J] e-aE(h-'J dt

- irg(t)[e-I(/ilft-..J+2ae(h - t) e-I(/ilft+..)] e-aE(h-t) dt

APPENDIX C

The functions Mil (x, y, t,~) from (2.26).

(B.l)

(B.2)

(B.3)

(BA)

MIl(x, y, t, e) =

{[(e2Vf -1) cos (~(~t - x) + w)- (2eH + 2ate(e2Vf -1) cos (~(~t - x)- w)] e-t(a.+y)

-[2~H cos U(~t - x)+ w)-(l-e-2Vf+4atHe)cos (~(~t - x)- w)]

e-t(at-y~/[(eVf-e-Vfi-4eH2] (C.l)

M I2(X, y, t, e) =

{[(e2Vf -1) sin (~(~t - x) + w) + (2eH + 2at€(e2Vf - 1» sin (e(~t - x) - w)] e-t(at+YJ
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[2gH sin CgCl3t - x) + w) + (1- e-2~H+ 4atHe) sin CgCl3t x) - w)]

e-~("I-Y)}/[(e~H-e-~H)2 - 4eH2J

M 21(X, y, t,~) =

!([(e2~H - 1) cos (g(l3t - x) + w) - (2~H + 2atg(e2~H -1)) cos (g(l3t - x) - w)]

· [I +2~(H - y)+e-2~(H-Y)J e-f(al+Y)

- [2~H cos (g(l3t - x) + w) - (1- e-2~H+4atHg2) cos (g(l3t - x) - w)J

· [1-2g(H - y)+e2~(H-Y)] e-f(al-Y)}/[(e~H -e-fH)2-4eH2]

M22(X, y, t, g)

4{[(e2fH -1) sin (e<l3t - x) + w) + (2gH + 2at~(e2~H -1)) sin (~(l3t - x) - w)]

'[1 + 2~(H y) + e-2f(H-Y}] e-f(al+Y)

- [2gH sin (g(l3t - x) + w) + (1- e-2fH + 4atHgz) sin (g(l3t - x) - w)]

· [1- 2~(H y) + e2f(H-Y)] e-f(al-Y)}/[(e~- e-eJ")2-4gzH2]

M 31(X, y, t, g) =

H[(e2~-I) sin (e<l3t - x) + w) - (2gH +2at~(e2~H-I» sin (~(l3t - x) - w)]

· [1 + 2~(H - y) - e-2~(H -Y)J e-f(al+y)

+ [2~H sin (~(l3t - x) +w) - (1- e-2~+4atHe) sin (g(l3t - x) - w)J

· [1-2g(H - y)_e2f(H-Y)J e-~(a'-Y}}/r(efH-e-~)2-4eH2]

Mn(x, y, t, g)

_4{[(e2fH-1) cos (~(l3t - x) + w) + (2gH + 2ate<e2~H-l» cos (~(l3t - x) - w)]

· [I +2HH - y)_e-2f(H-Y)] e-f(aI+Y}

+ [2gH cos (g(l3t - x) + w) + (1- e-2~H +4atHe) cos (~(l3t - x) - w)]

· [1-2~(H - y)_e2~(H-Y)] e-~(a'-Y~/[(efH-e-~H)2_4eH2]

(C.2)

(C.3)

(CA)

(C.5)

(C.6)


